Single-molecule localization microscopy (SMLM) enables precise spatial localization of single molecules in cellular structures. A phenomenon called supercritical angle fluorescence (SAF) is utilized in SMLM (SAF-SMLM) to estimate the axial positions of single fluorophores. It is based on the fact that SAF intensity is highly sensitive to the fluorophore-coverslip distance. Conventional SAF-SMLM methods typically involve splitting the fluorescence emission into supercritical and undercritical components, which requires a complicated two-channel system and can lead to reduced light efficiency. In this work, we introduce a simplified approach to traditional SAF-SMLM by directly detecting all fluorescence into a single channel. Through simulations, we found that by accurately modeling the point spread function (PSF) with SAF, a single-channel system achieves better localization precision than two-channel-based SAF-SMLM systems. Furthermore, we developed a stage-tilt correction algorithm, incorporating stage tilt in the PSF model, to improve axial precision over the entire field of view. We applied our method experimentally by imaging F-actin filaments in HeLa cells. We demonstrate that our method efficiently exploits the information from SAF and achieves enhanced axial localization precision and accuracy compared to traditional SMLM localization methods for single-channel systems.
Enhanced supercritical angle localization microscopy through point spread function modeling.
通过点扩散函数建模增强超临界角定位显微镜技术
阅读:20
作者:Khan Sajjad A, Lidke Keith A, Liu Sheng
| 期刊: | Biomedical Optics Express | 影响因子: | 3.200 |
| 时间: | 2025 | 起止号: | 2025 Jul 10; 16(8):3139-3155 |
| doi: | 10.1364/BOE.563592 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
