Oxidized Low-Density Lipoprotein Induces Reactive Oxygen Species-Dependent Proliferation of Intestinal Epithelial Cells.

氧化低密度脂蛋白诱导肠上皮细胞活性氧依赖性增殖

阅读:4
作者:Gonzalez-Horta Eddy E, Burgueno Juan F, Leiva María J, Villavicencio Carla, Kawaguchi Fernando I, Hazime Hajar, Reyes Fátima, Manrique-Suárez Viana, Parra Natalie C, Abreu Maria T, Toledo Jorge R
Background/Objectives: Oxidized low-density lipoprotein (ox-LDL) is a proinflammatory particle associated with various diseases and affects cell proliferation and viability in multiple cell types. However, its impact on intestinal epithelial cells remains underexplored. This study investigates the effect of ox-LDL on colonic epithelial cell proliferation and viability, as well as the underlying mechanisms involved. Methods: The expression levels of ox-LDL receptors in human colonoids were analyzed at baseline and in response to proinflammatory signals by qRT-PCR. The effect of ox-LDL on organoid proliferation was analyzed using morphometric measurements, viability assays, and the incorporation of a thymidine analog into DNA. The generation of reactive oxygen species (ROS) was determined by Amplex Red assays. Additionally, ox-LDL-induced ROS-dependent organoid proliferation was studied by exposing colonoids to an antioxidant or ROS inhibitors. Results: Colonic epithelial cells express ox-LDL receptors. Ox-LDL significantly induces the proliferation of colonic epithelial cells, which are dependent on ROS generation. Notably, ROS scavengers and NADPH inhibitors reduced ox-LDL-induced proliferation, highlighting the crucial role of oxidative stress in this process. Conclusions: This study demonstrates for the first time that ox-LDL stimulates CEC proliferation mediated by ROS production and validates that the colonic organoid model enables the analysis of potential pharmacological strategies for intestinal diseases characterized by oxidative stress and inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。