Adaptive optics (AO) improves the spatial resolution of microscopy by correcting optical aberrations. While its application has been well established in microscopy modalities utilizing a circular pupil, its adaptation to systems with non-circular pupils, such as Bessel-focus two-photon fluorescence microscopy (2PFM) with an annular pupil, remains relatively uncharted. Herein, we present a modal focal AO (MFAO) method for Bessel-focus 2PFM. Measuring and correcting aberration using a spatial light modulator placed in conjugation with the focal plane of the microscope objective, MFAO employs Zernike annular polynomials - a first in AO implementation - to achieve performance on par with a previous zonal AO method, but with a notably simplified optical configuration. We validated the performance of MFAO in correcting artificial and sample-induced aberrations, as well as in in vivo imaging of zebrafish larvae and mouse brains. By expanding the application of modal AO to annular pupils as well as aberration measurement and correction to a wavefront modulator at the objective focal plane, MFAO represents a notable advancement in the implementation of AO in microscopy.
Modal focal adaptive optics for Bessel-focus two-photon fluorescence microscopy.
用于贝塞尔聚焦双光子荧光显微镜的模态聚焦自适应光学系统
阅读:4
作者:Kim Hyeonggeon, Natan Ryan, Chen Wei, Winans Amy M, Fan Jiang Lan, Isacoff Ehud, Ji Na
| 期刊: | Optics Express | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Jan 13; 33(1):680-693 |
| doi: | 10.1364/OE.541033 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
