Three-dimensional cerebral vasculature topological parameter extraction of transgenic zebrafish embryos with a filling-enhancement deep learning network.

利用填充增强深度学习网络提取转基因斑马鱼胚胎的三维脑血管拓扑参数

阅读:3
作者:Chen Chong, Tang YuJun, Tan Yao, Wang LinBo, Li Hui
Quantitative analysis of zebrafish cerebral vasculature is essential for the study of vascular development and disease. We developed a method to accurately extract the cerebral vasculature topological parameters of transgenic zebrafish embryos. The intermittent and hollow vascular structures of transgenic zebrafish embryos, obtained from 3D light-sheet imaging, were transformed into continuous solid structures with a filling-enhancement deep learning network. The enhancement enables the extraction of 8 vascular topological parameters accurately. Quantitation of the zebrafish cerebral vasculature vessels with the topological parameters show a developmental pattern transition from 2.5 to 5.5 dpf.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。