Metabolic engineering of stomatal precursor cells enhances photosynthetic water-use efficiency and vegetative growth under water-deficit conditions in Arabidopsis thaliana.

通过对拟南芥气孔前体细胞进行代谢工程改造,可以提高其在水分亏缺条件下的光合作用水分利用效率和营养生长

阅读:16
作者:Bouvier Jacques W, Kelly Steven
Stomata are epidermal pores that control the exchange of gaseous CO(2) and H(2)O between plants and their environment. Modulating stomatal density can alter this exchange and thus presents a viable target for engineering improved crop productivity and climate resilience. Here, we show that stomatal density in Arabidopsis thaliana can be decreased by the expression of a water-forming NAD(P)H oxidase targeted to stomatal precursor cells. We demonstrate that this reduction in stomatal density occurs irrespective of whether the expressed enzyme is localized to the cytosol, chloroplast stroma or chloroplast intermembrane space of these cells. We also reveal that this decrease in stomatal density occurs in the absence of any measurable impact on the efficiency and thermal sensitivity of photosynthesis, or on stomatal dynamics. Consequently, overexpression plants exhibit a higher intrinsic water-use efficiency due to an increase in CO(2) fixed per unit water transpired. Finally, we demonstrate that this enhanced water-use efficiency translates to an improvement in vegetative growth and biomass accumulation under water-deficit conditions. Together, these results thus provide a novel approach for enhancing plant productivity through metabolic engineering of stomatal density.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。