We investigated whether Kif3a in osteoblasts has a direct role in regulating postnatal bone formation. We conditionally deleted Kif3a in osteoblasts by crossing osteocalcin (Oc; also known as Bglap)-Cre with Kif3a(flox/null) mice. Conditional Kif3a-null mice (Kif3a(Oc-cKO)) had a 75% reduction in Kif3a transcripts in bone and osteoblasts. Conditional deletion of Kif3a resulted in the reduction of primary cilia number by 51% and length by 27% in osteoblasts. Kif3a(Oc-cKO) mice developed osteopenia by 6 weeks of age unlike Kif3a(flox/+) control mice, as evidenced by reductions in femoral bone mineral density (22%), trabecular bone volume (42%) and cortical thickness (17%). By contrast, Oc-Cre;Kif3a(flox/+) and Kif3a(flox/null) heterozygous mice exhibited no skeletal abnormalities. Loss of bone mass in Kif3a(Oc-cKO) mice was associated with impaired osteoblast function in vivo, as reflected by a 54% reduction in mineral apposition rate and decreased expression of Runx2, osterix (also known as Sp7 transcription factor 7; Sp7), osteocalcin and Dmp1 compared with controls. Immortalized osteoblasts from Kif3a(Oc-cKO) mice exhibited increased cell proliferation, impaired osteoblastic differentiation, and enhanced adipogenesis in vitro. Osteoblasts derived from Kif3a(Oc-cKO) mice also had lower basal cytosolic calcium levels and impaired intracellular calcium responses to fluid flow shear stress. Sonic hedgehog-mediated Gli2 expression and Wnt3a-mediated β-catenin and Axin2 expression were also attenuated in Kif3a(Oc-cKO) bone and osteoblast cultures. These data indicate that selective deletion of Kif3a in osteoblasts disrupts primary cilia formation and/or function and impairs osteoblast-mediated bone formation through multiple pathways including intracellular calcium, hedgehog and Wnt signaling.
Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia.
成骨细胞中 Kif3a 的破坏会导致骨形成缺陷和骨质减少
阅读:3
作者:Qiu Ni, Xiao Zhousheng, Cao Li, Buechel Meagan M, David Valentin, Roan Esra, Quarles L Darryl
| 期刊: | Journal of Cell Science | 影响因子: | 3.600 |
| 时间: | 2012 | 起止号: | 2012 Apr 15; 125(Pt 8):1945-57 |
| doi: | 10.1242/jcs.095893 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
