Developing vaccines with a better stability is an area of improvement to meet the global health needs of preventing infectious diseases. With the advancement of data science and artificial intelligence, innovative approaches have emerged. This manuscript highlights the applications of machine learning through two cases in which Bayesian optimization was used to develop viral vaccine formulations. The two case studies monitored the critical quality attributes of virus A in liquid form by infectious titer loss and virus B in freeze-dried form by glass transition temperature. Stepwise analysis and model optimization demonstrated progressive improvements of model quality and prediction accuracy. The cross-validation matrices of the models' predictions showed high R² and low root mean square errors, indicating their reliability. The prediction accuracy of models was further validated by using test datasets. Model analysis using prediction error plot, Shapeley Additive exPlanations, permutation importance, etc. can provide additional insights into relations between model and experimental design, the influence of features of interest, and non-linear responses. Overall, Bayesian optimization is a useful complementary tool in formulation development that can help scientists make effective data-driven decisions.
Bayesian optimization and machine learning for vaccine formulation development.
贝叶斯优化和机器学习在疫苗制剂开发中的应用
阅读:5
作者:Li Lillian, Back Sung-In, Ma Jian, Guo Yawen, Galeandro-Diamant Thomas, Clénet Didier
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2025 | 起止号: | 2025 Jun 11; 20(6):e0324205 |
| doi: | 10.1371/journal.pone.0324205 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
