Rational design of self-amplifying virus-like vesicles with Ebola virus glycoprotein as vaccines.

以埃博拉病毒糖蛋白为疫苗的自扩增病毒样囊泡的合理设计

阅读:3
作者:Zhang Hong-Qing, Zhang Ya-Nan, Deng Cheng-Lin, Zhu Qin-Xuan, Zhang Zhe-Rui, Li Xiao-Dan, Yuan Zhi-Ming, Zhang Bo
As emerging and re-emerging pathogens, filoviruses, especially Ebola virus (EBOV), pose a great threat to public health and require sustained attention and ongoing surveillance. More vaccines and antiviral drugs are imperative to be developed and stockpiled to respond to unpredictable outbreaks. Virus-like vesicles, generated by alphavirus replicons expressing homogeneous or heterogeneous glycoproteins (GPs), have demonstrated the capacity of self-propagation and shown great potential in vaccine development. Here, we describe a novel class of EBOV-like vesicles (eVLVs) incorporating both EBOV GP and VP40. The eVLVs exhibited similar antigenicity as EBOV. In murine models, eVLVs were highly attenuated and elicited robust GP-specific antibodies with neutralizing activities. Importantly, a single dose of eVLVs conferred complete protection in a surrogate EBOV lethal mouse model. Furthermore, our VLVs strategy was also successfully applied to Marburg virus (MARV), the representative member of the genus Marburgvirus. Taken together, our findings indicate the feasibility of an alphavirus-derived VLVs strategy in combating infection of filoviruses represented by EBOV and MARV, which provides further evidence of the potential of this platform for universal live-attenuated vaccine development.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。