Development and characterization of a fully humanized ACE2 mouse model.

构建和表征全人源化ACE2小鼠模型

阅读:5
作者:Ge Chunyu, Salem Amr R, Elsharkawy Amany, Natekar Janhavi, Guglani Anchala, Doja Jaser, Ogala Osarume, Wang Gavin, Griffin Susan H, Slivano Orazio J, Shoemaker Robin, Ogola Benard O, Basler Christopher F, Kumar Ajay, Bryant W Bart, Kumar Mukesh, Miano Joseph M
BACKGROUND: Many humanized angiotensin-converting enzyme 2 (ACE2) mouse models of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection do not replicate human ACE2 protein expression and thus exhibit pathology infrequently observed in humans. To address this limitation, we designed and characterized a fully humanized ACE2 (hACE2) mouse by replacing all exons/introns of the mouse Ace2 locus with human DNA comprising the entire ACE2 gene and an upstream long noncoding RNA (LncRNA). RESULTS: Compared to the popular Keratin18 ACE2 (KRT18-ACE2, K18) mouse model of SARS-CoV-2 infection, hACE2 mice displayed a similar tissue expression profile of ACE2 as that seen in human tissues. Further, hACE2 mice showed comparable blood pressure, angiotensin II metabolism, and renal cortical transcriptome as wild-type mice. Intranasal infection of K18 mice with the beta variant of SARS-CoV-2 resulted in high viral replication and inflammation of the lung and brain, weight loss, and compassionate euthanasia five days post-infection (PI). Similarly infected hACE2 mice displayed viral replication and inflammation in the lung (but not in brain), sustained weight, and 100% survival up to 12 days PI, with clear evidence of acquired immunity. CRISPR-mediated disruption of the upstream LncRNA caused minimal effects on ACE2 mRNA and protein. CONCLUSIONS: The hACE2 model offers a more accurate approach to studying mechanisms underlying tissue-restricted expression of ACE2, elucidating noncoding sequence variants and an upstream LncRNA, and defining pathways relevant to human disease and associated co-morbidities.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。