Deep learning-based method for grading histopathological liver fibrosis in rodent models of metabolic dysfunction-associated steatohepatitis.

基于深度学习的代谢功能障碍相关脂肪性肝炎啮齿动物模型肝组织病理学纤维化分级方法

阅读:23
作者:Ko Soo Min, Shin Jae-Ik, Hong Yiyu, Kim Hyunji, Sohn Insuk, Lee Ji-Young, Han Hyo-Jeong, Jeong Da Som, Lee Yerin, Son Woo-Chan
INTRODUCTION: Metabolic dysfunction-associated steatohepatitis (MASH) is a significant liver disease that can lead to cirrhosis and liver cancer. Accurate assessment of liver fibrosis is crucial for diagnosis, prognosis, and informed treatment decision-making. Staging of liver fibrosis in MASH is based on Kleiner's score, which categorizes fibrosis based on its location within the liver as observed microscopically. This scoring system is part of a standard clinical research network and relies heavily on the expertise of pathologists. METHODS: This study utilized Sirius Red-stained whole slide images of liver tissue obtained from various MASH animal models to develop deep learning (DL) models for scoring liver fibrosis, with a focus on the criteria outlined in Kleiner's score. We created a trainable and testable dataset of whole-slide images of the liver, consisting of 999,711 patch images derived from 914 whole-slide images. The performance of the multi-class classification model was evaluated using the kappa statistic, area under the precision-recall curve (AUPRC), area under the receiver operating characteristic curve (AUROC), and Matthews correlation coefficient (MCC). RESULTS: To address challenges in clinical subclassification, a 5-class classification model was initially applied; the model achieved moderate agreement. A more refined 7-class model was subsequently developed, which outperformed the 5-class classification model. The enhanced subclassification significantly improved classification performance, as evidenced by the superior AUROC and AUPRC values of the 7-class model. DISCUSSION: This study highlights that DL models for scoring liver fibrosis can support expert pathologists in staging liver fibrosis in preclinical animal studies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。