BACKGROUND: Diabetes is a chronic metabolic disease that causes serious consequences in different organs such as the heart, kidneys, pancreas, and liver. Metformin (MTF) is a common treatment for type 2 diabetes. It controls the blood glucose level by improving insulin sensitivity and glucose absorption. MTF belongs to BCS class III, which is characterized by high solubility and low permeability. Several types of nanoparticles have been developed to overcome the permeability problem of MTF. METHODS: In this study, we prepared nanostructured lipid carriers (NLCs) loaded with metformin (MTF) using hot melt homogenization-ultrasonication. To select the best formulation, the prepared MTF-NLCs were evaluated for entrapment efficiency % (EE%), particle size, zeta potential, polydispersity index (PDI), and in vitro drug release. The optimized formulation was selected based on the high EE%, small particle size, high absolute zeta potential, low polydispersity index, and high in vitro drug release. The optimized formulation was evaluated for surface morphology by transmission electron microscope (TEM) and for further biochemical and histological analyses in a high-fat diet-induced type 2 diabetes mellitus (T2DM) in vivo rat model; HFD was administered (44.3-kJ/kg total energy) for four weeks, followed by a single intraperitoneal injection of streptozotocin (STZ). Rats were allocated into four groups; Diabetic (DM), DM+MTF, DM+MTF-NLC, and control group. Serum and tissue samples were processed for inflammatory markers detection and histopathology. RESULTS: The prepared MTF-NLC formulation exhibited high EE% (80.65 ± 1.95% to 99.31 ± 3.25%), small particle size (247.72±5.74nm-503.23±7.26nm), high negative zeta potential (from -31.83â±â0.98mV to -51.6â±â2.64mV), PDI value less than 0.5 for all MTF-NLCs, and controlled drug release. MTF-NLC7 appeared spherical when examined by TEM. MTF and MTF-NLC groups significantly alleviated the degenerative effects of DM in both submandibular glands (SMG) and pancreas. Additionally, treatments improved kidney and liver function reduced serum inflammatory cytokines, and tissue SMG and pancreatic immunostaining of inflammatory cytokines with favorable effects of MTF-NLCs. Moreover, the MTF-NLCs showed a significant reduction of serum inflammatory cytokines, including (TNF-α and IL-1β) and pancreatic TNF-α expression, in addition to ameliorating liver and renal functions compared to MTF alone. CONCLUSION: The preparation of MTF as NLCs improved its permeability, enhancing its anti-inflammatory activity and providing more protection against diabetes-induced organ injury.
Optimized Nanostructured Lipid Carriers for Metformin: Enhanced Anti-Inflammatory Activity and Protection Against Type 2 Diabetes-Induced Organ Damage.
优化纳米结构脂质载体用于二甲双胍:增强抗炎活性并防止 2 型糖尿病引起的器官损伤
阅读:7
作者:Qushawy Mona, Alanazi Mansuor A, Hikal Wafaa M, Amirthalingam Palanisamy, Abu-Gharbieh Eman, Almanzalawi Wejdan Saleh, Mortagi Yasmin, Elsherbiny Nehal, Elsherbini Amira M
| 期刊: | International Journal of Nanomedicine | 影响因子: | 6.500 |
| 时间: | 2025 | 起止号: | 2025 Mar 24; 20:3765-3788 |
| doi: | 10.2147/IJN.S506631 | 研究方向: | 免疫/内分泌 |
| 疾病类型: | 糖尿病 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
