RAS mutations affect tumor necrosis factor-induced apoptosis in colon carcinoma cells via ERK-modulatory negative and positive feedback circuits along with non-ERK pathway effects

RAS 突变通过 ERK 调节负反馈和正反馈回路以及非 ERK 通路效应影响肿瘤坏死因子诱导的结肠癌细胞凋亡

阅读:6
作者:Pamela K Kreeger, Roli Mandhana, Shannon K Alford, Kevin M Haigis, Douglas A Lauffenburger

Abstract

More than 40% of colon cancers have a mutation in K-RAS or N-RAS, GTPases that operate as central hubs for multiple key signaling pathways within the cell. Utilizing an isogenic panel of colon carcinoma cells with K-RAS or N-RAS variations, we observed differences in tumor necrosis factor-alpha (TNFalpha)-induced apoptosis. When the dynamics of phosphorylated ERK response to TNFalpha were examined, K-RAS mutant cells showed lower activation whereas N-RAS mutant cells exhibited prolonged duration. These divergent trends were partially explained by differential induction of two ERK-modulatory circuits: negative feedback mediated by dual-specificity phosphatase 5 and positive feedback by autocrine transforming growth factor-alpha. Moreover, in the various RAS mutant colon carcinoma lines, the transforming growth factor-alpha autocrine loop differentially elicited a further downstream chemokine (CXCL1/CXCL8) autocrine loop, with the two loops having opposite effects on apoptosis. Although the apoptotic responses of the RAS mutant panel to TNFalpha treatment showed significant dependence on the respective phosphorylated ERK dynamics, successful prediction across the various cell lines required contextual information concerning additional pathways including IKK and p38. A quantitative computational model based on weighted linear combinations of these pathway activities successfully predicted not only the spectrum of cell death responses but also the corresponding chemokine production responses. Our findings indicate that diverse RAS mutations yield differential cell behavioral responses to inflammatory cytokine exposure by means of (a) differential effects on ERK activity via multiple feedback circuit mechanisms, and (b) differential effects on other key signaling pathways contextually modulating ERK-related dependence.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。