High-Fat-Diet-Induced Metabolic Disorders: An Original Cause for Neurovascular Uncoupling Through the Imbalance of Glutamatergic Pathways.

高脂饮食诱发的代谢紊乱:谷氨酸能通路失衡导致神经血管解耦的根本原因

阅读:3
作者:Haas Manon, Petrault Maud, Gele Patrick, Ouk Thavarak, Berezowski Vincent, Petrault Olivier, Bastide Michèle
Backgrounds/Objective: The impact of metabolic disturbances induced by an unbalanced diet on cognitive decline in mid-life is now widely observed, although the mechanisms are not well identified. Here we report that glutamatergic vasoactive pathways are a key feature of high-fat-diet (HFD)-induced neurogliovascular uncoupling in mice. Methods: C57Bl6/J mice are fed either with normal diet (ND) or high-fat diet (HFD) during 6 or 12 months and characterized for metabolic status. Cerebral vascular tree from pial to intraparenchymal arteries, is investigated with Halpern's arteriography and with differential interference contrast infrared imaging of brain slices. Results: A 70% alteration in the myogenic tone of the basilar artery is observed as early as 6 months (M6) after the HFD. Infrared imaging revealed a 77% reduction in the glutamate-induced vasodilation of intraparenchymal arterioles appearing after 12 months (M12) of the HFD. The respective contributions of enzymes involved in glutamatergic pathways were altered as a function of HFD and time. The decrease in astrocytic COX I observed at M6 was followed by a loss of neuronal COX II and a compensatory action of NOS at M12. Conclusions: This HFD-induced neurogliovascular uncoupling pathway offers therapeutic targets to consider for improving cerebral vasoactive functions while preventing peripheral metabolic disturbances.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。