Advancements in the microfabrication of soft materials have enabled the creation of increasingly sophisticated functional synthetic tissue structures for a myriad of tissue engineering applications. A challenge facing the field is mimicking the complex microarchitecture necessary to recapitulate proper morphology and function of many endogenous tissue constructs. This paper describes the creation of PEGDA hydrogel microenvironments (microgels) that maintain a high level of viability at single cell patterning scales and can be integrated into composite scaffolds with tunable modulus. PEGDA was stereolithographically patterned using a digital micromirror device to print single cell microgels at progressively decreasing length scales. The effect of feature size on cell viability was assessed and inert gas purging was introduced to preserve viability. A composite PEGDA scaffold created by this technique was mechanically tested and found to enable dynamic adjustability of the modulus. Together this approach advances the ability to microfabricate tissues that better mimic native constructs on cellular and subcellular length scales.
Cell Printing in Complex Hydrogel Scaffolds.
在复杂水凝胶支架中进行细胞打印
阅读:6
作者:Noren Benjamin E, Shaha Rajib K, Stenquist Alan T, Frick Carl P, Oakey John S
| 期刊: | IEEE Transactions on Nanobioscience | 影响因子: | 4.400 |
| 时间: | 2019 | 起止号: | 2019 Apr;18(2):265-268 |
| doi: | 10.1109/TNB.2019.2905517 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
