Inferring single-cell transcriptomic dynamics with structured latent gene expression dynamics.

利用结构化的潜在基因表达动态推断单细胞转录组动态

阅读:3
作者:Farrell Spencer, Mani Madhav, Goyal Sidhartha
Gene expression dynamics provide directional information for trajectory inference from single-cell RNA sequencing data. Traditional approaches compute RNA velocity using strict modeling assumptions about transcription and splicing of RNA. This can fail in scenarios where multiple lineages have distinct gene dynamics or where rates of transcription and splicing are time dependent. We present "LatentVelo," an approach to compute a low-dimensional representation of gene dynamics with deep learning. LatentVelo embeds cells into a latent space with a variational autoencoder and models differentiation dynamics on this "dynamics-based" latent space with neural ordinary differential equations. LatentVelo infers a latent regulatory state that controls the dynamics of an individual cell to model multiple lineages. LatentVelo can predict latent trajectories, describing the inferred developmental path for individual cells rather than just local RNA velocity vectors. The dynamics-based embedding batch corrects cell states and velocities, outperforming comparable autoencoder batch correction methods that do not consider gene expression dynamics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。