Nonlinear classifiers for wet-neuromorphic computing using gene regulatory neural network.

基于基因调控神经网络的湿神经形态计算非线性分类器

阅读:4
作者:Ratwatte Adrian, Somathilaka Samitha, Balasubramaniam Sasitharan, Gilad Assaf A
The gene regulatory network (GRN) of biological cells governs a number of key functionalities that enable them to adapt and survive through different environmental conditions. Close observation of the GRN shows that the structure and operational principles resemble an artificial neural network (ANN), which can pave the way for the development of wet-neuromorphic computing systems. Genes are integrated into gene-perceptrons with transcription factors (TFs) as input, where the TF concentration relative to half-maximal RNA concentration and gene product copy number influences transcription and translation via weighted multiplication before undergoing a nonlinear activation function. This process yields protein concentration as the output, effectively turning the entire GRN into a gene regulatory neural network (GRNN). In this paper, we establish nonlinear classifiers for molecular machine learning using the inherent sigmoidal nonlinear behavior of gene expression. The eigenvalue-based stability analysis, tailored to system parameters, confirms maximum-stable concentration levels, minimizing concentration fluctuations and computational errors. Given the significance of the stabilization phase in GRNN computing and the dynamic nature of the GRN, alongside potential changes in system parameters, we utilize the Lyapunov stability theorem for temporal stability analysis. Based on this GRN-to-GRNN mapping and stability analysis, three classifiers are developed utilizing two generic multilayer sub-GRNNs and a sub-GRNN extracted from the Escherichia coli GRN. Our findings also reveal the adaptability of different sub-GRNNs to suit different application requirements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。