Decoding cellular state transitions is crucial for understanding complex biological processes in development and disease. While recent advancements in single-cell RNA sequencing (scRNA-seq) offer insights into cellular trajectories, existing tools primarily study expressional rather than regulatory state shifts. We present CellTran, a statistical approach utilizing paired-gene expression correlations to detect transition cells from scRNA-seq data without explicitly resolving gene regulatory networks. Applying our approach to various contexts, including tissue regeneration, embryonic development, preinvasive lesions, and humoral responses post-vaccination, reveals transition cells and their distinct gene expression profiles. Our study sheds light on the underlying molecular mechanisms driving cellular state transitions, enhancing our ability to identify therapeutic targets for disease interventions.
A statistical approach for systematic identification of transition cells from scRNA-seq data.
一种利用scRNA-seq数据系统地识别过渡细胞的统计方法
阅读:5
作者:Wang Yuanxin, Dede Merve, Mohanty Vakul, Dou Jinzhuang, Li Ziyi, Chen Ken
| 期刊: | Cell Reports Methods | 影响因子: | 4.500 |
| 时间: | 2024 | 起止号: | 2024 Dec 16; 4(12):100913 |
| doi: | 10.1016/j.crmeth.2024.100913 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
