Leveraging protein structural information to evaluate pathogenicity has been hindered by the scarcity of experimentally determined 3D protein. With the aid of AlphaFold2 predictions, we developed the structure-informed genetic missense mutation assessor (SIGMA) to predict missense variant pathogenicity. In comparison with existing predictors across labeled variant datasets and experimental datasets, SIGMA demonstrates superior performance in predicting missense variant pathogenicity (AUCÂ = 0.933). We found that the relative solvent accessibility of the mutated residue contributed greatly to the predictive ability of SIGMA. We further explored combining SIGMA with other top-tier predictors to create SIGMA+, proving highly effective for variant pathogenicity prediction (AUCÂ = 0.966). To facilitate the application of SIGMA, we pre-computed SIGMA scores for over 48 million possible missense variants across 3,454 disease-associated genes and developed an interactive online platform (https://www.sigma-pred.org/). Overall, by leveraging protein structure information, SIGMA offers an accurate structure-based approach to evaluating the pathogenicity of missense variants.
SIGMA leverages protein structural information to predict the pathogenicity of missense variants.
SIGMA 利用蛋白质结构信息来预测错义变异的致病性
阅读:6
作者:Zhao Hengqiang, Du Huakang, Zhao Sen, Chen Zefu, Li Yaqi, Xu Kexin, Liu Bowen, Cheng Xi, Wen Wen, Li Guozhuang, Chen Guilin, Zhao Zhengye, Qiu Guixing, Liu Pengfei, Zhang Terry Jianguo, Wu Zhihong, Wu Nan
| 期刊: | Cell Reports Methods | 影响因子: | 4.500 |
| 时间: | 2024 | 起止号: | 2024 Jan 22; 4(1):100687 |
| doi: | 10.1016/j.crmeth.2023.100687 | 靶点: | IGM、IgM |
| 研究方向: | 免疫/内分泌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
