LabGym: Quantification of user-defined animal behaviors using learning-based holistic assessment.

LabGym:使用基于学习的整体评估来量化用户定义的动物行为

阅读:4
作者:Hu Yujia, Ferrario Carrie R, Maitland Alexander D, Ionides Rita B, Ghimire Anjesh, Watson Brendon, Iwasaki Kenichi, White Hope, Xi Yitao, Zhou Jie, Ye Bing
Quantifying animal behavior is important for biological research. Identifying behaviors is the prerequisite of quantifying them. Current computational tools for behavioral quantification typically use high-level properties such as body poses to identify the behaviors, which constrains the information available for a holistic assessment. Here we report LabGym, an open-source computational tool for quantifying animal behaviors without this constraint. In LabGym, we introduce "pattern image" to represent the animal's motion pattern, in addition to "animation" that shows all spatiotemporal details of a behavior. These two pieces of information are assessed holistically by customizable deep neural networks for accurate behavior identifications. The quantitative measurements of each behavior are then calculated. LabGym is applicable for experiments involving multiple animals, requires little programming knowledge to use, and provides visualizations of behavioral datasets. We demonstrate its efficacy in capturing subtle behavioral changes in diverse animal species.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。