High-throughput super-resolution single-particle trajectory analysis reconstructs organelle dynamics and membrane reorganization.

高通量超分辨率单颗粒轨迹分析重建细胞器动力学和膜重组

阅读:6
作者:Parutto Pierre, Heck Jennifer, Lu Meng, Kaminski Clemens, Avezov Edward, Heine Martin, Holcman David
Super-resolution imaging can generate thousands of single-particle trajectories. These data can potentially reconstruct subcellular organization and dynamics, as well as measure disease-linked changes. However, computational methods that can derive quantitative information from such massive datasets are currently lacking. We present data analysis and algorithms that are broadly applicable to reveal local binding and trafficking interactions and organization of dynamic subcellular sites. We applied this analysis to the endoplasmic reticulum and neuronal membrane. The method is based on spatiotemporal segmentation that explores data at multiple levels and detects the architecture and boundaries of high-density regions in areas measuring hundreds of nanometers. By connecting dense regions, we reconstructed the network topology of the endoplasmic reticulum (ER), as well as molecular flow redistribution and the local space explored by trajectories. The presented methods are available as an ImageJ plugin that can be applied to large datasets of overlapping trajectories offering a standard of single-particle trajectory (SPT) metrics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。