Single-cell multi-omics topic embedding reveals cell-type-specific and COVID-19 severity-related immune signatures.

单细胞多组学主题嵌入揭示了细胞类型特异性和 COVID-19 严重程度相关的免疫特征

阅读:4
作者:Zhou Manqi, Zhang Hao, Bai Zilong, Mann-Krzisnik Dylan, Wang Fei, Li Yue
The advent of single-cell multi-omics sequencing technology makes it possible for researchers to leverage multiple modalities for individual cells and explore cell heterogeneity. However, the high-dimensional, discrete, and sparse nature of the data make the downstream analysis particularly challenging. Here, we propose an interpretable deep learning method called moETM to perform integrative analysis of high-dimensional single-cell multimodal data. moETM integrates multiple omics data via a product-of-experts in the encoder and employs multiple linear decoders to learn the multi-omics signatures. moETM demonstrates superior performance compared with six state-of-the-art methods on seven publicly available datasets. By applying moETM to the scRNA + scATAC data, we identified sequence motifs corresponding to the transcription factors regulating immune gene signatures. Applying moETM to CITE-seq data from the COVID-19 patients revealed not only known immune cell-type-specific signatures but also composite multi-omics biomarkers of critical conditions due to COVID-19, thus providing insights from both biological and clinical perspectives.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。