Multiple-source single-cell datasets have accumulated quickly and need computational methods to integrate and decompose into meaningful components. Here, we present inClust (integrated clustering), a flexible deep generative framework that enables embedding auxiliary information, latent space vector arithmetic, and clustering. All functional parts are relatively modular, independent in implementation but interrelated at runtime, resulting in an all-in general framework that could work in supervised, semi-supervised, or unsupervised mode. We show that inClust is superior to most data integration methods in benchmark datasets. Then, we demonstrate the capability of inClust in the tasks of conditional out-of-distribution generation in supervised mode, label transfer in semi-supervised mode, and spatial domain identification in unsupervised mode. In these examples, inClust could accurately express the effect of each covariate, distinguish the query-specific cell types, or segment spatial domains. The results support that inClust is an excellent general framework for multiple-task harmonization and data decomposition.
A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data.
一种深度生成框架,嵌入了向量运算和分类器,用于单细胞数据的样本生成、标签迁移和聚类
阅读:3
作者:Wang Lifei, Nie Rui, Zhang Zhang, Gu Weiwei, Wang Shuo, Wang Anqi, Zhang Jiang, Cai Jun
| 期刊: | Cell Reports Methods | 影响因子: | 4.500 |
| 时间: | 2023 | 起止号: | 2023 Aug 10; 3(8):100558 |
| doi: | 10.1016/j.crmeth.2023.100558 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
