Engineering protein activity into off-the-shelf DNA devices.

将蛋白质活性工程化应用于现成的DNA器件中

阅读:3
作者:Sekhon Harsimranjit, Loh Stewart N
DNA-based devices are straightforward to design by virtue of their predictable folding, but they lack complex biological activity such as catalysis. Conversely, protein-based devices offer a myriad of functions but are much more difficult to design due to their complex folding. This study combines DNA and protein engineering to generate an enzyme that is activated by a DNA sequence of choice. A single protein switch, engineered from nanoluciferase using the alternate-frame-folding mechanism and herein called nLuc-AFF, is paired with different DNA technologies to create a biosensor for specific nucleic acid sequences, sensors for serotonin and ATP, and a two-input logic gate. nLuc-AFF is a genetically encoded, ratiometric, blue/green-luminescent biosensor whose output can be quantified by a phone camera. nLuc-AFF retains ratiometric readout in 100% serum, making it suitable for analyzing crude samples in low-resource settings. This approach can be applied to other proteins and enzymes to convert them into DNA-activated switches.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。