Testosterone-induced singing in songbirds is thought to involve testosterone-dependent morphological changes that include angiogenesis and neuronal recruitment into the HVC, a central part of the song control circuit. Previous work showed that testosterone induces the production of vascular endothelial growth factor (VEGF) and its receptor (VEGFR2 tyrosine kinase), which in turn leads to an upregulation of brain-derived neurotrophic factor (BDNF) production in HVC endothelial cells. Here we report for the first time that systemic inhibition of the VEGFR2 tyrosine kinase is sufficient to block testosterone-induced song in adult female canaries, despite sustained androgen exposure and the persistence of the effects of testosterone on HVC morphology. Expression of exogenous BDNF in HVC, induced locally by in situ transfection, reversed the VEGFR2 inhibition-mediated blockade of song development, thereby restoring the behavioral phenotype associated with androgen-induced song. The VEGFR2-inhibited, BDNF-treated females developed elaborate male-like song that included large syllable repertoires and high syllable repetition rates, features known to attract females. Importantly, although functionally competent new neurons were recruited to HVC after testosterone treatment, the time course of neuronal addition appeared to follow BDNF-induced song development. These findings indicate that testosterone-associated VEGFR2 activity is required for androgen-induced song in adult songbirds and that the behavioral effects of VEGFR2 inhibition can be rescued by BDNF within the adult HVC.
Brain-derived neurotrophic factor signaling in the HVC is required for testosterone-induced song of female canaries.
脑源性神经营养因子在 HVC 中的信号传导是雌性金丝雀睾酮诱导鸣叫所必需的
阅读:5
作者:Hartog Tessa E, Dittrich Falk, Pieneman Anton W, Jansen René F, Frankl-Vilches Carolina, Lessmann Volkmar, Lilliehook Christina, Goldman Steven A, Gahr Manfred
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2009 | 起止号: | 2009 Dec 9; 29(49):15511-9 |
| doi: | 10.1523/JNEUROSCI.2564-09.2009 | 研究方向: | 神经科学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
