Adoption of an in-silico analysis approach to assess the functional and structural impacts of rpoB-encoded protein mutations on Chlamydia pneumoniae sensitivity to antibiotics.

采用计算机模拟分析方法评估 rpoB 编码蛋白突变对肺炎衣原体抗生素敏感性的功能和结构影响

阅读:3
作者:Esskhayry Sanae, Benamri Ichrak, Lamzouri Afaf, Kaissi Ouafae, Fissoune Rachida, Moussa Ahmed, Radouani Fouzia
BACKGROUND: Antibiotics are frequently used to treat infections caused by Chlamydia pneumoniae; an obligate intracellular gram-negative bacterium commonly associated with respiratory diseases. However, improper or overuse of these drugs has raised concerns about the development of antibiotic resistance, which poses a significant global health challenge. Previous studies have revealed a link between mutations in the rpoB-encoded protein of C. pneumoniae and antibiotic resistance. This study assessed these mutations via various bioinformatics tools to predict their impact on function, structural stability, antibiotic binding, and, ultimately, their effect on bacterial sensitivity to antibiotics. RESULTS: Eight mutations in the rpoB-encoded protein (R421S, F450S, L456I, S454F, D461E, S476F, L478S, and S519Y) are associated with resistance to rifampin and rifalazil. These mutations occur in conserved regions of the protein, leading to decreased stability and affecting essential functional sites of RNA polymerase, the target of these antibiotics. Although the structural differences between the native and mutant proteins are minimal, notable changes in local hydrogen bonding have been observed. Despite similar binding energies, variations in hydrogen bonds and hydrophobic interactions in certain mutants (for instance, D461E for rifalazil and S476F for rifampin) indicate that these changes may diminish ligand affinity and specificity. Furthermore, protein-protein network analysis demonstrated a strong correlation between wild-type rpoB and ten C. pneumoniae proteins, each fulfilling specific functional roles. Consequently, some of these mutations can reduce the bacterium's sensitivity to rifampin and rifalazil, thereby contributing to antibiotic resistance. CONCLUSION: The findings of this study indicate that mutations in the rpoB gene, which encodes the beta subunit of RNA polymerase, are pivotal in the resistance of C. pneumoniae to rifampin and rifalazil. Some of these mutations may result in reduced protein stability and changes in the structure, function, and antibiotic binding. As a consequence, the efficacy of these drugs in inhibiting RNA polymerase is compromised, allowing the bacteria to persist in transcription and replication even in the presence of antibiotics. Overall, these insights enhance our understanding of the resistance mechanisms in C. pneumoniae and could guide the development of strategies to address this challenge. CLINICAL TRIAL NUMBER: Not applicable.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。