Seasonal variations of serotonin in the visual system of an ant revealed by immunofluorescence and a machine learning approach.

利用免疫荧光和机器学习方法揭示蚂蚁视觉系统中血清素的季节性变化

阅读:3
作者:Bolder Maximilian F, Jung Klaus, Stern Michael
Hibernation, as an adaptation to seasonal environmental changes in temperate or boreal regions, has profound effects on mammalian brains. Social insects of temperate regions hibernate as well, but despite abundant knowledge on structural and functional plasticity in insect brains, the question of how seasonal activity variations affect insect central nervous systems has not yet been thoroughly addressed. Here, we studied potential variations of serotonin-immunoreactivity in visual information processing centres in the brain of the long-lived ant species Lasius niger. Quantitative immunofluorescence analysis revealed stronger serotonergic signals in the lamina and medulla of the optic lobes of wild or active laboratory workers than in hibernating animals. Instead of statistical inference by testing, differentiability of seasonal serotonin-immunoreactivity was confirmed by a machine learning analysis using convolutional artificial neuronal networks (ANNs) with the digital immunofluorescence images as input information. Machine learning models revealed additional differences in the third visual processing centre, the lobula. We further investigated these results by gradient-weighted class activation mapping. We conclude that seasonal activity variations are represented in the ant brain, and that machine learning by ANNs can contribute to the discovery of such variations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。