Activation of extracellular signal-regulated kinases 1 and 2 (Erk1/2; also known as MAPK3 and MAPK1, respectively) at the plasma membrane usually leads to their translocation to various intracellular sites, where scaffolding proteins mediate substrate targeting. However, in platelet-derived growth factor (PDGF)-induced signaling, Erk1/2 phosphorylate Pak1 to drive cell migration while remaining at the plasma membrane, raising the question of whether scaffolding proteins are required. Similarly, the small GTPase Arf-like protein 4D (Arl4D) promotes cell migration by recruiting Pak1 to the plasma membrane and facilitating its phosphorylation, although the mechanism linking recruitment to phosphorylation remains unclear. To address these questions, we show that Arl4D functions as a scaffolding protein by recruiting Erk1/2 and Pak1 to the plasma membrane, assembling them into a functional complex. This complex allows Erk1/2 to phosphorylate Pak1, supporting the role of the latter in cell migration. Our findings identify Arl4D as a novel regulator of Erk1/2, reveal a conserved role of scaffolding proteins in Erk1/2 substrate targeting, and uncover an unrecognized interplay among Arl4D, Erk1/2 and Pak1. These insights provide a deeper understanding of the molecular coordination underlying Pak1-mediated cell migration and its regulation by Erk1/2 and Arl4D.
The phosphorylation of Pak1 by Erk1/2 to drive cell migration requires Arl4D acting as a scaffolding protein.
Erk1/2 对 Pak1 的磷酸化驱动细胞迁移,需要 Arl4D 作为支架蛋白发挥作用
阅读:13
作者:Chang Ting-Wei, Lin Ming-Chieh, Yu Chia-Jung, Lee Fang-Jen S
| 期刊: | Journal of Cell Science | 影响因子: | 3.600 |
| 时间: | 2025 | 起止号: | 2025 May 15; 138(10):jcs263812 |
| doi: | 10.1242/jcs.263812 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
