Hydrophobic Coatings with Charge Permeability via Plasma Deposition of Long-Chain Perfluorocarbons.

通过等离子体沉积长链全氟碳化合物制备具有电荷渗透性的疏水涂层

阅读:5
作者:Delcheva Iliana, Weinfurter Anna, Hui Ka Wai, Gheorghiu Alexandru, Tran Thi Thuy Dung, Vasilev Krasimir, Mougel Victor, Harmer Sarah L, MacGregor Melanie N
Hydrophobization of nanotextured catalyst materials is a promising route to enhance the yield of N(2) and CO(2) conversion into green fuels. However, these applications require a hydrophobic coating to not only promote air trapping but also allow charge transfer at the electrode-electrolyte interface. In this work, nano thin films with thicknesses as low as 7 nm were deposited from the plasma phase of perfluorohexene, perfluorodecene, and perfluorooctane (PFO) precursors using a mild vacuum and gentle powers. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) characterization reveal that the resulting films are conformal and hydrophobic thanks to a good retention of CF(2) and CF(3) moieties. The PFO films exhibited the highest water contact angle and achieved superhydrophobic states when deposited on top of re-entrant nano features, an indication of successful air trapping. Electrochemical studies further demonstrated that the plasma-deposited PFO films allow charge transfer but could only sustain repeated cyclic voltammetry cycles without losing their hydrophobicity when deposited under optimal conditions. This result indicates that plasma deposition could become a viable route for the hydrophobization of electrocatalysts required to enhance the yield of poorly soluble gas reduction reactions.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。