Synaptic rearrangements during critical periods of postnatal brain development rely on the correct formation, strengthening, and elimination of synapses and associated dendritic spines to form functional networks. The correct balance of these processes is thought to be regulated by synapse-specific changes in the subunit composition of NMDA-type glutamate receptors (NMDARs). Among these, the nonconventional NMDAR subunit GluN3A has been suggested to play a role as a molecular brake in synaptic maturation. We tested here this hypothesis using confocal time-lapse imaging in rat hippocampal organotypic slices and assessed the role of GluN3A-containing NMDARs on spine dynamics. We found that overexpressing GluN3A reduced spine density over time, increased spine elimination, and decreased spine stability. The effect of GluN3A overexpression could be further enhanced by using an endocytosis-deficient GluN3A mutant and reproduced by silencing the adaptor protein PACSIN1, which prevents the endocytosis of endogenous GluN3A. Conversely, silencing of GluN3A reduced spine elimination and favored spine stability. Moreover, reexpression of GluN3A in more mature tissue reinstated an increased spine pruning and a low spine stability. Mechanistically, the decreased stability in GluN3A overexpressing neurons could be linked to a failure of plasticity-inducing protocols to selectively stabilize spines and was dependent on the ability of GluN3A to bind the postsynaptic scaffold GIT1. Together, these data provide strong evidence that GluN3A prevents the activity-dependent stabilization of synapses thereby promoting spine pruning, and suggest that GluN3A expression operates as a molecular signal for controlling the extent and timing of synapse maturation.
GluN3A promotes dendritic spine pruning and destabilization during postnatal development.
GluN3A 促进出生后发育过程中树突棘的修剪和不稳定
阅读:8
作者:Kehoe Laura A, Bellone Camilla, De Roo Mathias, Zandueta Aitor, Dey Partha Narayan, Pérez-Otaño Isabel, Muller Dominique
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2014 | 起止号: | 2014 Jul 9; 34(28):9213-21 |
| doi: | 10.1523/JNEUROSCI.5183-13.2014 | 研究方向: | 发育与干细胞 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
