Proximity labeling reveals interactions necessary to maintain the distinct apical domains of Drosophila photoreceptors.

邻近标记揭示了维持果蝇感光细胞独特顶端区域所必需的相互作用

阅读:3
作者:Sastry Lalitha, Rylee Johnathan, Mahato Simpla, Zelhof Andrew C
Specialized membrane and cortical protein regions are common features of cells and are utilized to isolate differential cellular functions. In Drosophila photoreceptors, the apical membrane domain is defined by two distinct morphological membranes: the rhabdomere microvilli and the stalk membrane. To define the apical cortical protein complexes, we performed proximity labeling screens utilizing the rhabdomeric-specific protein PIP82 as bait. We found that the PIP82 interactome is enriched in actin-binding and cytoskeleton proteins, as well as proteins for cellular trafficking. Analysis of one target, Bifocal, with PIP82 revealed two independent pathways for localization to the rhabdomeric membrane and an additional mechanism of crosstalk between the protein complexes of the rhabdomeric and stalk membranes. The loss of Bifocal, and enhancement in the PIP82, bifocal double mutant, resulted in the additional distribution of Crumbs, an apical stalk membrane protein, to the lateral basal photoreceptor membrane. This phenotype was recapitulated by the knockdown of the catalytic subunit of Protein phosphatase 1, a known interactor with Bifocal. Taken together, these results expand our understanding of the molecular mechanisms underlying the generation of the two distinct photoreceptor apical domains.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。