Microbial vitamin biosynthesis links gut microbiota dynamics to chemotherapy toxicity.

微生物维生素生物合成将肠道菌群动态与化疗毒性联系起来

阅读:4
作者:Hillege Lars E, Trepka Kai R, Guthrie Benjamin G H, Fu Xueyan, Aarnoutse Romy, Paymar Maia R, Olson Christine, Zhang Chen, Ortega Edwin, Ramirez Lorenzo, de Vos-Geelen Judith, Valkenburg-van Iersel Liselot, van Hellemond Irene E G, Baars Arnold, Vestjens Johanna H M J, Penders John, Deutschbauer Adam, Atreya Chloe E, Kidder Wesley A, Smidt Marjolein L, Ziemons Janine, Turnbaugh Peter J
Dose-limiting toxicities pose a major barrier to cancer treatment. While preclinical studies show that the gut microbiota influences and is influenced by anticancer drugs, data from patients paired with careful side effect monitoring remains limited. Here, we investigate capecitabine (CAP)-microbiome interactions through longitudinal metagenomic sequencing of stool from 56 advanced colorectal cancer patients. CAP significantly altered the gut microbiome, enriching for menaquinol (vitamin K2) biosynthesis genes. Transposon library screens, targeted gene deletions, and media supplementation revealed that menaquinol biosynthesis protects Escherichia coli from drug toxicity. Stool menaquinol gene and metabolite levels were associated with decreased peripheral sensory neuropathy. Machine learning models trained in this cohort predicted toxicities in an independent cohort. Taken together, these results suggest treatment-associated increases in microbial vitamin biosynthesis serve a chemoprotective role for bacterial and host cells. Further, our findings provide a foundation for in-depth mechanistic dissection, human intervention studies, and extension to other cancer treatments.IMPORTANCESide effects are common during the treatment of cancer. The trillions of microbes found within the human gut are sensitive to anticancer drugs, but the effects of treatment-induced shifts in gut microbes for side effects remain poorly understood. We profiled gut microbes in colorectal cancer patients treated with capecitabine and carefully monitored side effects. We observed a marked expansion in genes for producing vitamin K2 (menaquinone). Vitamin K2 rescued gut bacterial growth and was associated with decreased side effects in patients. We then used information about gut microbes to develop a predictive model of drug toxicity that was validated in an independent cohort. These results suggest that treatment-associated increases in bacterial vitamin production protect both bacteria and host cells from drug toxicity, providing new opportunities for intervention and motivating the need to better understand how dietary intake and bacterial production of micronutrients like vitamin K2 influence cancer treatment outcomes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。