Bayesian estimation of maximum entropy model for individualized energy landscape analysis of brain state dynamics.

基于贝叶斯方法的最大熵模型用于个体化脑状态动力学能量景观分析

阅读:4
作者:Kang Jiyoung, Jeong Seok-Oh, Pae Chongwon, Park Hae-Jeong
The pairwise maximum entropy model (MEM) for resting state functional MRI (rsfMRI) has been used to generate energy landscape of brain states and to explore nonlinear brain state dynamics. Researches using MEM, however, has mostly been restricted to fixed-effect group-level analyses, using concatenated time series across individuals, due to the need for large samples in the parameter estimation of MEM. To mitigate the small sample problem in analyzing energy landscapes for individuals, we propose a Bayesian estimation of individual MEM using variational Bayes approximation (BMEM). We evaluated the performances of BMEM with respect to sample sizes and prior information using simulation. BMEM showed advantages over conventional maximum likelihood estimation in reliably estimating model parameters for individuals with small sample data, particularly utilizing the empirical priors derived from group data. We then analyzed individual rsfMRI of the Human Connectome Project to show the usefulness of MEM in differentiating individuals and in exploring neural correlates for human behavior. MEM and its energy landscape properties showed high subject specificity comparable to that of functional connectivity. Canonical correlation analysis identified canonical variables for MEM highly associated with cognitive scores. Inter-individual variations of cognitive scores were also reflected in energy landscape properties such as energies, occupation times, and basin sizes at local minima. We conclude that BMEM provides an efficient method to characterize dynamic properties of individuals using energy landscape analysis of individual brain states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。