Hyperspectral Images (HSI) classification is a challenging task due to a large number of spatial-spectral bands of images with high inter-similarity, extra variability classes, and complex region relationships, including overlapping and nested regions. Classification becomes a complex problem in remote sensing images like HSIs. Convolutional Neural Networks (CNNs) have gained popularity in addressing this challenge by focusing on HSI data classification. However, the performance of 2D-CNN methods heavily relies on spatial information, while 3D-CNN methods offer an alternative approach by considering both spectral and spatial information. Nonetheless, the computational complexity of 3D-CNN methods increases significantly due to the large capacity size and spectral dimensions. These methods also face difficulties in manipulating information from local intrinsic detailed patterns of feature maps and low-rank frequency feature tuning. To overcome these challenges and improve HSI classification performance, we propose an innovative approach called the Attention 3D Central Difference Convolutional Dense Network (3D-CDC Attention DenseNet). Our 3D-CDC method leverages the manipulation of local intrinsic detailed patterns in the spatial-spectral features maps, utilizing pixel-wise concatenation and spatial attention mechanism within a dense strategy to incorporate low-rank frequency features and guide the feature tuning. Experimental results on benchmark datasets such as Pavia University, Houston 2018, and Indian Pines demonstrate the superiority of our method compared to other HSI classification methods, including state-of-the-art techniques. The proposed method achieved 97.93% overall accuracy on the Houston-2018, 99.89% on Pavia University, and 99.38% on the Indian Pines dataset with the 25 Ã 25 window size.
Attention 3D central difference convolutional dense network for hyperspectral image classification.
基于注意力机制的三维中心差分卷积密集网络用于高光谱图像分类
阅读:6
作者:Ashraf Mahmood, Alharthi Raed, Chen Lihui, Umer Muhammad, Alsubai Shtwai, Eshmawi Ala Abdulmajid
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2024 | 起止号: | 2024 Apr 10; 19(4):e0300013 |
| doi: | 10.1371/journal.pone.0300013 | 研究方向: | 心血管 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
