During slow-wave sleep and deep anesthesia, the rat hippocampus displays a slow oscillation (SO) that follows "up-and-down" state transitions in the neocortex. There has been recent debate as to whether this local field potential (LFP) rhythm reflects internal processing or entrains with respiratory inputs. To solve this issue, here we have concomitantly recorded respiration along with hippocampal, neocortical, and olfactory bulb (OB) LFPs in rats anesthetized with urethane. During the course of anesthesia, LFPs transitioned between activity states characterized by the emergence of different oscillations. By jointly analyzing multisite LFPs and respiratory cycles, we could distinguish three types of low-frequency hippocampal oscillations: (1) SO, which coupled to neocortical up-and-down transitions; (2) theta, which phase-reversed across hippocampal layers and was largest at the fissure; and (3) a low-frequency rhythm with largest amplitude in the dentate gyrus, which coupled to respiration-entrained oscillations in OB and to respiration itself. In contrast, neither theta nor SO coupled to respiration. The hippocampal respiration-coupled rhythm and SO had frequency <1.5 Hz, whereas theta tended to be faster (>3 Hz). Tracheotomy abolished hippocampal respiration-coupled rhythm, which was restored by rhythmic delivery of air puffs into the nasal cavity. These results solve the apparent contradictions among previous studies by demonstrating that the rat hippocampus produces multiple types of low-frequency oscillations. Because they synchronize with different brain circuits, however, we postulate that each activity pattern plays a unique role in information processing. SIGNIFICANCE STATEMENT: The rat hippocampus exhibits a large-amplitude slow oscillation (<1.5 Hz) during deep sleep and anesthesia. It is currently debated whether this rhythm reflects internal processing with the neocortex or entrainment by external inputs from rhythmic nasal respiration, which has similar frequency. Here we reconcile previous studies by showing that the hippocampus can actually produce two low-frequency rhythms at nearby frequencies: one that indeed couples to respiration and another that is coupled to the neocortex. We further show that the respiration-coupled rhythm differs from theta oscillations. The results support a role for brain oscillations in connecting distant brain regions, and posit the respiratory cycle as an important reference for neuronal communication between olfactory and memory networks.
A Respiration-Coupled Rhythm in the Rat Hippocampus Independent of Theta and Slow Oscillations.
大鼠海马体中与呼吸耦合的节律独立于 Theta 波和慢波振荡
阅读:5
作者:Lockmann André L V, Laplagne Diego A, Leão Richardson N, Tort Adriano B L
| 期刊: | Journal of Neuroscience | 影响因子: | 4.000 |
| 时间: | 2016 | 起止号: | 2016 May 11; 36(19):5338-52 |
| doi: | 10.1523/JNEUROSCI.3452-15.2016 | 种属: | Rat |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
