Engineered Recombinant Hagfish Intermediate Filament Proteins: Unraveling Domain Roles in Synthetic Fiber Formation and Mechanics.

工程化重组盲鳗中间丝蛋白:揭示结构域在合成纤维形成和力学中的作用

阅读:3
作者:Wasserman Oran, Oliveira Paula E, Bell Brianne E, Jefferson Samuel, Fairbanks Spencer, Watson Annie, Lewis Randolph V, Jones Justin A
Hagfish intermediate filament (HIF) proteins, consisting of α and γ subunits, have been previously recombinantly expressed, purified, and utilized to form dry fibers with impressive mechanical properties. HIFα and HIFγ consist of three protein domains (N-termini, C-termini, and central rod domain). To begin to understand the structure-function relationship between the protein domains in fiber formation and properties in a synthetic fiber spinning system, we designed recombinant protein constructs with varying combinations of the N-terminus, central rod domain (CRD), and C-terminus for both the α and γ proteins. The constructs, for both α and γ, were expressed, purified, and spun into dry fibers, which were then tested and analyzed for mechanical and structural properties. Mechanical testing revealed that the α constructs had the highest tensile strength when both termini were removed while including either terminus improved strain and toughness compared to α CRD constructs. The γ constructs displayed improved tensile strength and elastic modulus when only the N-terminus was present. Mixing the α and γ constructs generally enhanced the mechanical properties compared to the full-length rHIFα and rHIFγ. Fourier transform infrared-attenuated total reflection (FTIR-ATR) analysis indicated that the CRD contributes more to the β-sheet content in the stretched fibers, while the termini contribute more to the α-helical/random coil regions. These findings provide valuable insights into the roles of the different protein domains in the assembly and mechanical performance of rHIF and other recombinantly expressed IF. By understanding these structure-function relationships, functionally tailored recombinant IF proteins can be designed for specific applications in biomaterials developments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。