We show that genetic recombination can be a powerful mechanism for escaping suboptimal peaks. Recent studies of empirical fitness landscapes reveal complex gene interactions and multiple peaks. However, classical work on recombination largely ignores the effect of complex gene interactions. Briefly, we restrict to fitness landscapes where the global peak is difficult to access. If the optimal genotype can be generated by shuffling genes present in the population, then recombination will produce the genotype. If, in addition, recombination is sufficiently rare, then the proportion of the genotype is expected to increase. Specifically, we consider landscapes where shuffling of suboptimal peak genotypes can produce the global peak genotype. The advantage of recombination we identify has no correspondence for 2-locus systems or for smooth landscapes. The effect of recombination indicated is sometimes extreme, also for rare recombination, in the sense that shutting off recombination could result in the organism failing to adapt. A standard question about recombination is whether the mechanism tends to accelerate or decelerate adaptation. However, we argue that extreme effects may be more important than how the majority falls. In a limited sense, our result can be considered a support for Sewall Wright's view that adaptation sometimes works better in subdivided populations.
Recombination and peak jumping.
重组和峰值跳跃
阅读:3
作者:Crona, Kristina
| 期刊: | PLoS One | 影响因子: | 2.600 |
| 时间: | 2018 | 起止号: | 2018 Mar 1; 13(3):e0193123 |
| doi: | 10.1371/journal.pone.0193123 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
