In principle, ML/AI-based algorithms should enable rapid and accurate cell segmentation in high-throughput settings. However, reliance on large training datasets, human input, computational expertise, and limited generalizability has prevented this goal of completely automated, high-throughput segmentation from being achieved. To overcome these roadblocks, we introduce an innovative self-supervised learning method (SSL) for pixel classification that does not require parameter tuning or curated data sets, and instead trains itself on the end-users' own data in a completely automated fashion, thus providing a more efficient cell segmentation approach for high-throughput, high-content image analysis. We demonstrate that our algorithm meets the criteria of being fully automated with versatility across various magnifications, optical modalities, and cell types. Moreover, our SSL algorithm is capable of identifying complex cellular structures and organelles, which are otherwise easily missed, thereby broadening the machine learning applications to high-content imaging. Our SSL technique displayed consistently high F1 scores across segmented cell images, with scores ranging from 0.771 to 0.888, matching or outperforming the popular Cellpose algorithm, which showed a greater F1 variance of 0.454 to 0.882, primarily due to more false negatives.
A self-supervised learning approach for high throughput and high content cell segmentation.
一种用于高通量、高内容细胞分割的自监督学习方法
阅读:4
作者:Lam Van K, Byers Jeff M, Robitaille Michael C, Kaler Logan, Christodoulides Joseph A, Raphael Marc P
| 期刊: | Communications Biology | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 May 21; 8(1):780 |
| doi: | 10.1038/s42003-025-08190-w | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
