Covariate-adjusted construction of gene regulatory networks using a combination of generalized linear model and penalized maximum likelihood.

利用广义线性模型和惩罚最大似然法相结合的方法构建协变量调整的基因调控网络

阅读:4
作者:Chatrabgoun Omid, Daneshkhah Alireza, Torkaman Parisa, Johnston Mark, Sohrabi Safa Nader, Kashif Bashir Ali
Many machine learning techniques have been used to construct gene regulatory networks (GRNs) through precision matrix that considers conditional independence among genes, and finally produces sparse version of GRNs. This construction can be improved using the auxiliary information like gene expression profile of the related species or gene markers. To reach out this goal, we apply a generalized linear model (GLM) in first step and later a penalized maximum likelihood to construct the gene regulatory network using Glasso technique for the residuals of a multi-level multivariate GLM among the gene expressions of one species as a multi-levels response variable and the gene expression of related species as a multivariate covariates. By considering the intrinsic property of the gene data which the number of variables is much greater than the number of available samples, a bootstrap version of multi-response multivariate GLM is used. To find most appropriate related species, a cross-validation technique has been used to compute the minimum square error of the fitted GLM under different regularization. The penalized maximum likelihood under a lasso or elastic net penalty is applied on the residual of fitted GLM to find the sparse precision matrix. Finally, we show that the presented algorithm which is a combination of fitted GLM and applying the penalized maximum likelihood on the residual of the model is extremely fast, and can exploit sparsity in the constructed GRNs. Also, we exhibit flexibility of the proposed method presented in this paper by comparing with the other methods to demonstrate the super validity of our approach.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。