Multi-packet transmission aero-engine DCS neural network sliding mode control based on multi-kernel LS-SVM packet dropout online compensation.

基于多核LS-SVM丢包在线补偿的多包传输航空发动机DCS神经网络滑模控制

阅读:5
作者:Guangfu Li, Xu Wang, Jia Ren
In view of the strong nonlinear characteristics of the multi-packet transmission Aero-engine DCS with induced delay and random packet dropout, a neural network PID approach law sliding-mode controller using sliding window strategy and multi-kernel LS-SVM packet dropout online compensation is proposed. Firstly, the time-delay term in the system model is transformed equivalently, to establish the discrete system model of multi-packet transmission without time-delay; furthermore, the construction of multi-kernel function is transformed into kernel function coefficient optimization, and the optimization problem can be solved by the chaos adaptive artificial fish swarm algorithm, then the online predictive compensation will be made for data packet dropout of multi-packet transmission through the sliding window multi-kernel LS-SVM. After that, a sliding-mode controller design method of proportional integral differential approach law based on neural network is proposed. And online adjustment of PID approach law parameters can be achieved by nonlinear mapping of neural network. Finally, Truetime is used to simulate the method. The results shows that when the packet dropout rate is 30% and 60%, the average error of packet dropout prediction of multi-kernel LS-SVM reduces 29.21% and 44.66% compared with that of combined kernel LS-SVM, and the chattering amplitude of the proposed neural network PID approach law sliding-mode controller is decreased compared with other five approach law methods respectively. This controller can ensure a fast response speed, which shows that this method can achieve a better tracking control of the aeroengine network control system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。