Zein was made flexible through acid-driven deamidation. This increased flexibility was confirmed by the higher release of water-soluble peptides during trypsin hydrolysis. Self-assembled flexible zein nanoparticles (FZNPs) were prepared using the anti-solvent precipitation method. To test the sensitivity of FZNPs to complex environment, ionic solutions (CaCl(2) and NaCl) at various concentrations were prepared. The morphology and particle size of FZNPs differed significantly from those of control zein nanoparticles (NZNPs). As the ionic concentration increased from 0 to 15 mmol/L, FZNPs showed higher electrical conductivity and adsorption capacity than NZNPs. This suggests that FZNPs are highly sensitive to complex environment. X-Ray Photoelectron Spectrum (XPS) results revealed that both FZNPs and NZNPs bound more Na(+) than Ca(2+). The enhanced sensitivity of FZNPs to complex environments may be due to their greater tendency for structural changes. These conformational changes are likely caused by the altered amino acids in flexible zein, which result from deamidation. This study offers a practical approach to designing novel nanoparticles as functional materials for delivering bioactive compounds.
Investigation of Self-Assembled Flexible Zein Nanoparticles and Their Sensitivity to Complex Environments.
对自组装柔性玉米醇溶蛋白纳米粒子及其对复杂环境的敏感性的研究
阅读:4
作者:Dong Shirong, Mu Guangqing
| 期刊: | Foods | 影响因子: | 5.100 |
| 时间: | 2025 | 起止号: | 2025 Mar 3; 14(5):859 |
| doi: | 10.3390/foods14050859 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
