This research presents a novel bi-gel system formed by combining zein microfiber -reinforced carrageenan hydrogels and beeswax oleogels. The main objective is investigating the impact of the interplay between zein microfibers, ι-carrageenan hydrogels, beeswax oleogels on the properties of bi-gels. The study focused on bi-gel formulations combining beeswax oleogel and carrageenan, both plain and with zein microfibers. Different ratios of oleogel to É©-carrageenan hydrogel and oleogel to reinforced É©-carrageenan hydrogel were established: 5:95, 10:90, 15:85. The designed bi-gels exhibited semi-solid gel properties in rheological analysis, with increased oleogel content enhancing firmness, storage modulus, and loss modulus (G' < Gâ³, p < 0.05). The incorporation of oleogel in the bi-gel substantially increased its consistency from 131 (g.s) to 668 (g.s) in the bi-gel containing 0.5% zein microfiber, 10% oleogel, and 90% hydrogel. FTIR results suggested that the bi-gels were formed through physical interactions without covalent cross-linking. Microfibers had a positive effect on the textural characteristics of bi-gels. The hardness of bi-gels increased from 13.26 to 35.12 g to 31-93-64.14 g after addition of microfibers. The BGZ10 formulation, consisting of 10% oleogel and 90% zein-reinforced hydrogel, showed the highest consistency among samples, with measurements of 668.48 ± 3.53 (g.s) and a G' value of 291000 ± 91.27 (Pa) (P < 0.05). Additionally, the BGZ10 formulation displayed the highest complex viscosity, measuring at 47300 ± 20.73 (P < 0.05). The thermal stability of bigel considerably increased by cooperation fibers in hydrogel. The developed bi-gels demonstrate significant potential for substituting conventional solid fats and introducing distinctive visual characteristics in various food products.
Studying the impact of zein microfibers on the physicochemical and microstructural properties of bi-gels based on ι-carrageenan hydrogels and beeswax oleogels.
研究玉米醇溶蛋白微纤维对基于α-卡拉胶水凝胶和蜂蜡油凝胶的双凝胶的物理化学和微观结构特性的影响
阅读:5
作者:Rezaei Mojtaba, Naji-Tabasi Sara, Ghorani Behrouz, Emadzadeh Bahareh
| 期刊: | Current Research in Food Science | 影响因子: | 7.000 |
| 时间: | 2025 | 起止号: | 2025 Jan 21; 10:100985 |
| doi: | 10.1016/j.crfs.2025.100985 | 研究方向: | 免疫/内分泌 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
