Among the numerous indoor localization methods, Light-Detection-and-Ranging (LiDAR)-based probabilistic algorithms have been extensively applied to indoor localization due to their real-time performance and high accuracy. Nevertheless, these methods are challenged in symmetrical environments when tackling global localization and the robot kidnapping problem. In this paper, a novel hybrid method that combines visual and probabilistic localization results is proposed. Augmented Monte Carlo Localization (AMCL) is improved for position tracking continually. LiDAR-based measurements' uncertainty is evaluated to incorporate discrete visual-based results; therefore, a better diversity of the particle can be maintained. The robot kidnapping problem can be detected and solved by preventing premature convergence of the particle filter. Extensive experiments were implemented to validate the robustness and accuracy performance. Meanwhile, the localization error was reduced from 30 mm to 9 mm during a 600 m tour.
Vision-Sensor-Assisted Probabilistic Localization Method for Indoor Environment.
面向室内环境的视觉传感器辅助概率定位方法
阅读:4
作者:Shi Hui, Yang Jianyu, Shi Jiashun, Zhu Lida, Wang Guofa
| 期刊: | Sensors | 影响因子: | 3.500 |
| 时间: | 2022 | 起止号: | 2022 Sep 20; 22(19):7114 |
| doi: | 10.3390/s22197114 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
