Predicting MYCN amplification in paediatric neuroblastoma: development and validation of a 18F-FDG PET/CT-based radiomics signature.

预测儿童神经母细胞瘤中的 MYCN 扩增:基于 18F-FDG PET/CT 的放射组学特征的开发和验证

阅读:5
作者:Qian Luo-Dan, Zhang Shu-Xin, Li Si-Qi, Feng Li-Juan, Zhou Zi-Ang, Liu Jun, Zhang Ming-Yu, Yang Ji-Gang
OBJECTIVES: To develop and validate an 18F-FDG PET/CT-based clinical-radiological-radiomics nomogram and evaluate its value in the diagnosis of MYCN amplification (MNA) in paediatric neuroblastoma (NB) patients. METHODS: A total of 104 patients with NB were retrospectively included. We constructed a nomogram to predict MNA based on radiomics signatures, clinical and radiological features. The multivariable logistic regression and the least absolute shrinkage and selection operator (LASSO) were used for feature selection. Radiomics models are constructed using decision trees (DT), logistic regression (LR) and support vector machine (SVM) classifiers. A clinical-radiological (C-R) model was developed using clinical and radiological features. A clinical-radiological-radiomics (C-R-R) model was developed using the C-R model of the best radiomics model. The prediction performance was verified by receiver operating characteristic (ROC) curve analysis, calibration curve analysis and decision curve analysis (DCA) in the training and validation cohorts. RESULTS: The present study showed that four radiomics signatures were significantly correlated with MNA. The SVM classifier was the best model of radiomics signature. The C-R-R model has the best discriminant ability to predict MNA, with AUCs of 0.860 (95% CI, 0.757-0.963) and 0.824 (95% CI, 0.657-0.992) in the training and validation cohorts, respectively. The calibration curve indicated that the C-R-R model has the goodness of fit and DCA confirms its clinical utility. CONCLUSION: Our research provides a non-invasive C-R-R model, which combines the radiomics signatures and clinical and radiological features based on 18F-FDGPET/CT images, shows excellent diagnostic performance in predicting MNA, and can provide useful biological information with stratified therapy. CRITICAL RELEVANCE STATEMENT: Radiomic signatures of 18F-FDG-based PET/CT can predict MYCN amplification in neuroblastoma. KEY POINTS: • Radiomic signatures of 18F-FDG-based PET/CT can predict MYCN amplification in neuroblastoma. • SF, LDH, necrosis and TLG are the independent risk factors of MYCN amplification. • Clinical-radiological-radiomics model improved the predictive performance of MYCN amplification.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。