A minimalist self-assembly nanosystem for cancer immunotherapy via multiple immune activation.

一种通过多重免疫激活进行癌症免疫治疗的极简自组装纳米系统

阅读:7
作者:Xu Weizhe, Wang Shiyuan, Zhang Jiayi, Wang Fang, Sun Zhaogang, Liu Bei, Ye Jun, Chu Hongqian
In recent years, anti-tumor immunity has emerged as a central focus in cancer research, with the rapid advancement of immunotherapy heralding a new era in cancer treatment. Despite the significant potential of immunotherapy, the use of single-agent approaches or limited combination therapies has not consistently yielded optimal therapeutic outcomes. The strategic and controlled integration of diverse immune activation techniques within a single nanoparticle, utilizing a straightforward and universal methodology, continues to present a substantial challenge. Self-assembly, as a simple synthesis method, offers the possibility of combining multiple therapeutic approaches through straightforward means. In this study, we developed a novel approach to construct a biocompatible nanosystem, named Cu-ICG-CpG-FA (CICF), which was synthesized through one-pot coordination-driven self-assembly of Cu(2+) ions, CpG oligonucleotides and indocyanine green (ICG), followed by a surface modification with folic acid. Folic acid, as a ligand, can bind to folic acid receptors expressed on the surface of tumor cells. Cu(2+) facilitates chemodynamic therapy (CDT) through the Fenton reaction. ICG serves as a therapeutic for photothermal therapy (PTT) and photodynamic therapy (PDT). Moreover, CDT and PTT/PDT can induce immunogenic cell death (ICD), which is further enhanced by the immune-stimulating effect of CpG, thereby improving the tumor immunosuppressive microenvironment. Therefore, CICF provides a simple and efficient approach to synergistic cancer immunotherapy with promising clinical applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。