Osteogenesis Activity and Porosity Effect of Biodegradable Mg-Ga Alloys Barrier Membrane for Guided Bone Regeneration: An in Vitro and in Vivo Study in Rabbits.

可生物降解的镁镓合金屏障膜的成骨活性和孔隙率对引导骨再生的影响:一项在兔体内和体外进行的研究

阅读:7
作者:Luo Qiyue, Gao Kang, Li Yan, Zhang Ziyue, Chen Su, Zhou Jian
Background/Objectives: Guided bone regeneration (GBR) requires barrier membrane materials that balance biodegradation with mechanical stability. Magnesium (Mg)-based metals have good prospects for use as biodegradable barrier materials due to their elastic modulus, good biocompatibility, and osteogenic properties. In this study, gallium (Ga) was introduced into Mg to enhance the mechanical strength and optimize the degradation behavior of the alloy, addressing the limitations of conventional magnesium alloys in corrosion control and strength retention. Methods: Mg-xGa alloys (x = 1.0-3.0%, wt.%) were evaluated for biocompatibility, degradation, and osteogenic potential. Corrosion rates were calculated via weight loss, Mg(2+) release, and pH changes. Osteogenic effects were assessed using rat bone marrow mesenchymal stem cells (rBMSCs) for alkaline phosphatase (ALP) activity, extracellular matrix (ECM) mineralization, and osteogenic-related gene expression. Optimal alloy was fabricated into barrier membranes with different pore sizes (0.85-1.70 mm) for the rabbit mandibular defect to evaluate the porosity effect on new bone formation. Results: Cytocompatibility tests established a biosafety threshold for Ga content below 3 wt.%. Mg-1Ga demonstrated uniform corrosion with a rate of 1.02 mm/year over 28 days. In vitro, Mg-1Ga enhanced ALP activity, ECM mineralization, and osteogenic gene expression. The 1.70 mm pore size group exhibited superior new bone formation and bone mineral density at 4 and 8 weeks. Conclusions: These results highlight Mg-1Ga's biocompatibility, controlled degradation, and osteogenic properties. Its optimized pore design bridges the gap between collagen membranes' poor strength and titanium meshes' non-degradability, offering a promising solution for GBR applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。