Increasing evidence shows that the early lesions of Parkinson's disease (PD) originate from gut, and correction of microbiota dysbiosis is a promising therapy for PD. FLZ is a neuroprotective agent on PD, which has been validated capable of alleviating microbiota dysbiosis in PD mice. However, the detailed mechanisms still need elucidated. Through metabolomics and 16S rRNA analysis, we identified glycoursodeoxycholic acid (GUDCA) was the most affected differential microbial metabolite by FLZ treatment, which was specially and negatively regulated by Clostridium innocuum, a differential microbiota with the strongest correlation to GUDCA production, through inhibiting bile salt hydrolase (BSH) enzyme. The protection of GUDCA on colon and brain were also clarified in PD models, showing that it could activate Nrf2 pathway, further validating that FLZ protected dopaminergic neurons through promoting GUDCA production. Our study uncovered that FLZ improved PD through microbiota-gut-brain axis, and also gave insights into modulation of microbial metabolites may serve as an important strategy for treating PD.
FLZ attenuates Parkinson's disease pathological damage by increasing glycoursodeoxycholic acid production via down-regulating Clostridium innocuu m.
FLZ 通过下调无害梭菌(Clostridium innocuu m)增加糖基熊去氧胆酸的产生,从而减轻帕金森病的病理损害
阅读:4
作者:Shang Meiyu, Ning Jingwen, Zang Caixia, Ma Jingwei, Yang Yang, Jiang Yueqi, Chen Qiuzhu, Dong Yirong, Wang Jinrong, Li Fangfang, Bao Xiuqi, Zhang Dan
| 期刊: | Acta Pharmaceutica Sinica B | 影响因子: | 14.600 |
| 时间: | 2025 | 起止号: | 2025 Feb;15(2):973-990 |
| doi: | 10.1016/j.apsb.2024.10.011 | 研究方向: | 微生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
