Depletion of luminal pyridine nucleotides in the endoplasmic reticulum activates autophagy with the involvement of mTOR pathway.

内质网腔内吡啶核苷酸的消耗会激活自噬,而 mTOR 通路参与其中

阅读:4
作者:Kapuy Orsolya, Bánhegyi Gábor
It has been recently shown that redox imbalance of luminal pyridine nucleotides in the endoplasmic reticulum (ER) together with oxidative stress results in the activation of autophagy. In the present study we demonstrated that decrease of luminal NADPH/NADP(+) ratio alone by metyrapone was sufficient to promote the mechanism of "self-eating" detected by the activation of LC3. Depletion of luminal NADPH had also significant effect on the key proteins of mTOR pathway, which got inactivated by dephosphorylation. These findings were also confirmed by silencing the proteins (glucose-6-phosphate transporter and hexose-6-phosphate dehydrogenase) responsible for NADPH generation in the ER lumen. However, silencing the key components and addition of metyrapone had different effects on downstream substrates 4EBP1 and p70S6K of mTOR. The applied treatments did not compromise the viability of the cells. Our data suggest that ER stress caused by luminal NADPH depletion activates a pro-survival autophagic mechanism firmly coupled to the activation of mTOR pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。