Individual Resting-State Brain Networks Enabled by Massive Multivariate Conditional Mutual Information.

基于大规模多元条件互信息的个体静息态脑网络

阅读:4
作者:Sundaram Padmavathi, Luessi Martin, Bianciardi Marta, Stufflebeam Steven, Hamalainen Matti, Solo Victor
Individual-level resting-state networks (RSNs) based on resting-state fMRI (rs-fMRI) are of great interest due to evidence that network dysfunction may underlie some diseases. Most current rs-fMRI analyses use linear correlation. Since correlation is a bivariate measure of association, it discards most of the information contained in the spatial variation of the thousands of hemodynamic signals within the voxels in a given brain region. Subject-specific functional RSNs using typical rs-fMRI data, are therefore dominated by indirect connections and loss of spatial information and can only deliver reliable connectivity after group averaging. While bivariate partial correlation can rule out indirect connections, it results in connectivity that is too sparse due to lack of sensitivity. We have developed a method that uses all the spatial variation information in a given parcel by employing a multivariate information-theoretic association measure based on canonical correlations. Our method, multivariate conditional mutual information (mvCMI) reliably constructs single-subject connectivity estimates showing mostly direct connections. Averaging across subjects is not needed. The method is applied to Human Connectome Project data and compared to diffusion MRI. The results are far superior to those obtained by correlation and partial correlation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。