Joint segmentation and detection of COVID-19 via a sequential region generation network.

通过序列区域生成网络进行 COVID-19 的联合分割和检测

阅读:8
作者:Wu Jipeng, Zhang Shengchuan, Li Xi, Chen Jie, Xu Haibo, Zheng Jiawen, Gao Yue, Tian Yonghong, Liang Yongsheng, Ji Rongrong
The fast pandemics of coronavirus disease (COVID-19) has led to a devastating influence on global public health. In order to treat the disease, medical imaging emerges as a useful tool for diagnosis. However, the computed tomography (CT) diagnosis of COVID-19 requires experts' extensive clinical experience. Therefore, it is essential to achieve rapid and accurate segmentation and detection of COVID-19. This paper proposes a simple yet efficient and general-purpose network, called Sequential Region Generation Network (SRGNet), to jointly detect and segment the lesion areas of COVID-19. SRGNet can make full use of the supervised segmentation information and then outputs multi-scale segmentation predictions. Through this, high-quality lesion-areas suggestions can be generated on the predicted segmentation maps, reducing the diagnosis cost. Simultaneously, the detection results conversely refine the segmentation map by a post-processing procedure, which significantly improves the segmentation accuracy. The superiorities of our SRGNet over the state-of-the-art methods are validated through extensive experiments on the built COVID-19 database.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。