Characterization of the Brain Functional Architecture of Psychostimulant Withdrawal Using Single-Cell Whole-Brain Imaging.

利用单细胞全脑成像技术表征精神兴奋剂戒断的大脑功能结构

阅读:3
作者:Kimbrough Adam, Kallupi Marsida, Smith Lauren C, Simpson Sierra, Collazo Andres, George Olivier
Numerous brain regions have been identified as contributing to withdrawal behaviors, but it is unclear the way in which these brain regions as a whole lead to withdrawal. The search for a final common brain pathway that is involved in withdrawal remains elusive. To address this question, we implanted osmotic minipumps containing either saline, nicotine (24 mg/kg/d), cocaine (60 mg/kg/d), or methamphetamine (4 mg/kg/d) for one week in male C57BL/6J mice. After one week, the minipumps were removed and brains collected 8 h (saline, nicotine, and cocaine) or 12 h (methamphetamine) after removal. We then performed single-cell whole-brain imaging of neural activity during the withdrawal period when brains were collected. We used hierarchical clustering and graph theory to identify similarities and differences in brain functional architecture. Although methamphetamine and cocaine shared some network similarities, the main common neuroadaptation between these psychostimulant drugs was a dramatic decrease in modularity, with a shift from a cortical-driven to subcortical-driven network, including a decrease in total hub brain regions. These results demonstrate that psychostimulant withdrawal produces the drug-dependent remodeling of functional architecture of the brain and suggest that the decreased modularity of brain functional networks and not a specific set of brain regions may represent the final common pathway associated with withdrawal.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。